
 The Bad Seeds - A Parallel Random Number Generation

Problem Weeded Out Long Ago, Crops Up Again

by

Sam Savage

Department of Operations Research

Terman Engineering Center

Stanford University

Stanford, CA 94305

Linus Schrage

Graduate School of Business

1101 E. 58th Street

University of Chicago

Chicago, IL 60637

Peter Lewis

Operations Research

Naval Postgraduate School

Monterey, Ca 93943-5000

David Empey

University of California, Santa Cruz

14 January 1994

Subject Classifications: Simulation: random variable generation, design of experiments

Abstract

A recurrent theme in systems simulation is the need to generate multiple independent sequences

from the same random number generator. The advent of parallel computing has accentuated this

need. Conventional advice is that if non-overlapping sequences are chosen from a good generator,

then the cross-correlation between sequences will be close to zero. When multiple streams of

pseudo-random numbers are generated by any of four popularly recommended multiplicative prime

modulus generators, we show that there exist initial seeds that avoid the overlap problem but result

in dramatically nonrandom behavior. We then give a suggestions for selecting initial seeds that

avoid both problems.

History

In 19?? John Von Neumann stated that anyone attempting to generate a random process through

deterministic means was living in a state of sin (date and exact quote needed). So far, history has

proven him correct on several occasions. Perhaps the most striking of these was the discovery by

Marsaglia in 19?? (reference) of a serious flaw in a widely used generator of the time. In an article

entitled "Random numbers lie mainly in the plane" he showed that triples of random numbers which

should have uniformly filled the unit cube, were in fact distributed accross a number of parallel

planes. In 19?? Donald Knuth (ref) described his effort to generate random numbers through an

extremely complex iterative process. The output appeared random at first, then quickly converged to

a single constant.

The above notwithstanding, it is still tempting to generate pseudo random variables deterministically

in order to get repeatable results.

Multiplicative congruential generators

Multiplicative congruential random number generators are probably the most widely used

procedures for computer generation of random numbers. Conceptually the technique can be

understood in terms of a common clock as follows:

Initialization: With the clock’s hands both straight up (12 O'clock), the hour hand is moved to an

initial position, x0 minutes. x0 is known as the seed.

As the hour hand is moved, the minute hand turns through 12 times as many minutes, perhaps

passing 12 O'clock, to arrive at x1 minutes. Where x1 = 12*x0 mod 60 is the first random variate.

Iterative step: The hour hand is moved to x i minutes (the ith random variate), whereupon the

minute hand will turn to xi+1 = 12* xi mod 60 minutes (the i+1st random variate).

From a practical standpoint, a standard clock is most unsatisfactory at generating pseudo-random

numbers, as x i will cycle through the sequence 12, 24, 48 and 36 indefinitely for any x0 which is not

a multiple of 5, and will remain at 0 for any x0 which is a multiple of 5. However, by generalizing to

a clock with P minutes and a gear ratio of ‘a” usefull results may be obtained. For good choices of a

and P the generator will be full cycle, that is, the generator will enumerate every integer in the

interval [1, P 1] exactly once before it cycles. Thus, from a global perspective there is no reason to

prefer one seed over another. Furthermore the sequence {x i} will display no serial correlation.

Now suppose we wish to generate two sequences of numbers {xi} and {yi} and we wish to use the

same recursion for both, i.e., xi = f(xi 1) and yi = f(yi 1). If we are concerned about the correlation

between xi and yi, can we still say that from a global perspective we are indifferent to choices of the

initial seeds x0 and y0? For standard multiplicative congruential generators the answer is "no".

 A number of simulation references suggest implicitly that when generating multiple streams

using the same generator, the starting seeds should be far apart, see for example, L´Écuyer and Côté

(1991) or Bratley, Fox, and Schrage (1987). The GPSS/H system, for example, uses starting seeds

that are 100,000 apart, see Schriber (1991). Below we show that for standard generators, "seeds far

apart" is not sufficient, specifically that there is a second potential problem independent of overlap.

 A standard multiplicative congruential generator uses the recursion xi = a*xi 1 mod P where

a is the multiplier and P is the modulus. If P is a prime number bigger than 2 and a is a primitive

root modulo P, then the generator is full cycle, i.e., if 0 <x0 <P, then xi will take on every value in

[1, P 1] exactly once before a number is repeated. If P = 2^31 1, then approximately 25% of the

integers in [2, P 1] are primitive roots. This full cycle behavior is desirable but does not guarantee

that the xi's have good statistical qualities (such as lack of autocorrelation). Fishman and Moore

(1986) point out that among multipliers that are full cycle, some multipliers are much better than

others in this statistical regard.

 Suppose we choose two integer seeds 0 <x0, y0 <P. Now there must exist some integer b

such that y0= b*x0 mod P. For example, if yo and xo are k apart in the full stream, then b = ak

mod P works. For subsequent "draws" we can write:

 yi = a*yi 1 mod P

 = ai*y0 mod P

 = ai*b*x0 mod P

 = b*aix0 mod P

 = b*xi mod P

 Thus, we can see xi and yi are effectively two successive numbers generated by a generator

of the form:

 zi+1 = b*zi mod P.

From a global perspective (xi, yi) have exactly the same statistical behavior as the pair (zi, zi+1).

Thus, if b is a good multiplier in the statistical sense of Fishman and Moore, then we would expect

xi and yi to be independent and therefore uncorrellated. Greenberger (1961) shows that the serial

correlation of (zi, zi+1) is bounded from above by

 (1/b) + (b+6) /P.

If b is not much bigger than 1 or not much smaller than P, this is not a very reassuring bound. The

following example shows that this concern is justified.

Example

 Suppose we carelessly choose x0 = 100,000, and y0 = 200,000. In this case it is easy to see

that b = 2. Whenever xi <.25*P, then yi <.5*P and so we would expect that xi and yi would appear

dependent.

 For a generator of the form xi = ax i 1 Mod P, Figure 1 shows the relationship between xi

and yi for the case of b = 2. For arbitrary integer b, one needs at most b parallel lines to cover the

pairs (xi, yi).

Figure 1. xi vs. yi, when yo = 2*xo

 Choosing the tuple multiplier, b, equal to 2, implies that for 0 xi P/2, we have yi = 2*xi;

while for P/2 < xi < P, we have yi = 2*xi P. If we look at Si = xi + yi, then with probability .5, Si is

uniform on (0, 1.5*P) and with probability .5, Si is uniform on (.5*P, 2*P). Thus, Si has the

"Olympic Awards Pedestal" distribution as in Figure 2; decidedly different from triangular

distribution we would expect if xi and yi were independent.

Figure 2: Distribution of xi + yi

 Thus, b = 2 or 3 is probably a bad choice, even though 2 and 3 occur at steps 1,385,473,320

and 1,783,741,719 respectively after 1 in the sequence generated by the popularly recommended

multiplier 16807, see Lewis et. al. (1969).

 We have illustrated that choosing b a small integer is not good. This result can be

generalized slightly to small rational numbers. Suppose yo and xo are chosen so that there are

positive integers b and c such that

 c yo mod P = b xo mod P

We then claim that for i = 1, 2, ...:

 c yi mod P = bxi mod P.

Suppose it is true for i 1; multiply by a gives:

 a c yi 1 mod P = a b xi 1 mod P

or c a yi 1 mod P = b a xi 1 mod P

or c yi mod P = b xi mod P, as was claimed.

We now claim that the (xi, yi) fall on at most b+c 1 parallel lines. (They may in fact fall on fewer

than b+c 1 lines, - which is even worse). The argument is as follows:

 c yi mod P bxi mod P = 0 implies

that there is an integer k, possibly negative, such that

 c yi bxi kP = 0.

Because 0 < xi, yi < P, the largest k needed is such that: c(P 1) b kP = 0. So k (cP (c+b))/P < c.

Similary, the smallest k needed is such that:

 c b (P 1) kP = 0

so

 k (bP + c+b)/P > b

The number of integers strictly between +c and b is c+b 1. Each value of k corresponds to a line in

(x,y) space, so there are at most c+b 1 such lines.

 De Matteis and Pagnutti (1988) analyze the case b = a(P 1)/2 mod P, c = 1 where P is a

prime and a is a primitive root of P. This choice of b is equivalent to jumping ahead halfway

through the full cycle, that is, yi = xi+s where s = (P 1)/2. They show the unhappy result that in this

case yi = P xi, that is, perfect negative correlation. They go on to say: "We have also analyzed the

pairs (xi, xi+s) for values of s corresponding to other divisors...but we did not succeed in detecting

strong linear patterns." We show that there are seeds that do display strong linear patterns.

Combinations of Generators

 Wichman and Hill (1982) describe a generator obtained by combining the outputs of three

generators, while L´Écuyer (1988) describes two generators obtained by combining the outputs of

either two or three generators. The same weakness that we have just described for simple generators

afflicts these more complicated generators. Specifically, an inappropriate choice of seeds for two

parallel streams X and Y can produce correlation that is essentially identical to that observed in

Figure 1.

 The "two stream" combination generator described in L´Écuyer (1988) is of the form:

 X1(i) = a1X1(i 1) mod P1 ,

 X2(i) = a2X2(i 1) mod P2 ,

 X3(i) = X1(i) X2(i)

 If X3(i) 0, then X3(i) = X3(i) + (P1 1)

The output is the stream X3(i). The user sees the component streams X1(i) and X2(i) only to the

extent that he must supply the seeds X1(0) and X2(0).

L´Écuyer's recommends:

 a1 = 40014, P1 = 2147483563, a2 = 40692, and P2 = 2147483399.

 Now suppose the user needs a second stream generated by the same generator but with

different seeds. Replace X by Y to denote this stream. The user happens to choose seeds such

that Y1(0) = b*X1(0) mod P1 and Y2(0) = b*X2(0) mod P2 . Suppose a1 , a2 , P1 and P2 are such

that the X1(i) and X2(i) streams are full cycle, and w = P1 P2 > 0. The qualitative result is that if

both b and w are small relative to P1, Y3(i) is well approximated by bX3(i) mod P1 . In fact if

b = 2 and Y3(i) is plotted vs. X3(i), the graph for L´Écuyer's generator is indistinguishable from

Figure 1.

 Suppose we randomly choose the ith output from the Y stream. By previous arguments we

have that Y1(i) = bX1(i) mod P1 . Now Y2(i) = bX2(i) mod P2 = bX2(i) rP2 = bX2(i) r(P1 w) =

bX2(i) rP1 + rw

 where r = bX2(i)/P2 ,

 and denotes the integer part.

so

 Y2(i) rw = bX2(i) rP1 .

 If Y2(i) rw 0, then it follows that

 Y2(i) rw = bX2(i) mod P1 .

Because i was chosen randomly, Y2(i) is uniform distributed over [1, P2 1]. Thus, Prob{Y2(i)

rw} = 1 rw/(P2 1) for rw P2 1. Because X2(i) < P2, it follows that r < b, so Prob{Y2(i) rw} > 1

bw(P2 1).

So for bw << P2, with high probability:

 Y3(i) = b X1(i) mod P1 {b X2(i) mod P1 + rw} + (P1 1)

where = 1 if Y3(i) would otherwise be 0.

We can rewrite this as

 Y3(i) = b {X1(i) X2(i)} rw r1 P1

where r1 is the unique integer causing:

 0 < b {X1(i) X2(i)} rw r1 P1 < P1

Now consider bX3(i) mod P1

 = b[X1(i) X2(i) + 1 (P 1 1)] mod P1

 where 1 = 1 if X1(i) X2(i) 0, else 0;

Rearranging:

 bX3(i) mod P1 = b{X1(i) X2(i)} b 1 r2 P1

where r2 is the unique integer causing:

 0 < b {X1(i) X2(i)} b 1 r2 P1 < P1

If P1 and P2 are both prime, and a1 and a2 are full cycle multipliers, then every possible value of

X1(i) is equally likely, given the value of X2(i). We can argue that given the value of X2(i), the

fraction of the values of X1(i) that cause r2 r1 is less than 2 b(w+2)/P 1. Recalling that 0 , 1

1 we conclude that

Prob{| Y3(i) bX3(i) mode P1 | < b + bw + 1}

 [1 bw/(P2 1)] [1 2b (w + 2)/P1]

 For L´Écuyer's two stream combination generator, w = 2147483563 2147483399 = 164. If

we carelessly choose seeds so that b = 2, then for the median value of Y3(i) with probability about

.9999995 we will have that | (Y3(i) bX3(i) mod P1) /Y3(i) | .0000003.

 We do not give proofs here for the other generator in L´Écuyer (1988) or Wichman and Hill

(1982), however, the same effect illustrated in Figure 1 can be observed by choosing seeds in the

second generator that are a small multiple of the seeds in the first generator.

Choosing Multiple Seeds Systematically

 Thus, we have several negative results on how not to choose other seeds. Can we give any

positive recommendations?

 Suppose we wish to generate m parallel random sequences from a simple generator. Think

of these as m-tuples (xi1, xi2, ... xim), (xi+1,1, xi+1,2, ..., xi+1,m), etc., where xij is the ith number

from the jth sequence. Given our previous comments, a way of doing this is to use two different

simple generators. Generate xi1, xi+1, 1, ... by the recursion: I) xi+1,1 = a*xi,1 mod P, and generate

xij, for j = 2, 3, ... m, by the recursion: II) xij = b*xij 1 mod P1. From our earlier result we know we

can achieve the same effect using recursion (II) when i = 1 and thereafter replacing (II) by the

recursion: II) xij = a * xi 1,j mod P for j = 2, 3, ..., m. Conceptually, the above approach randomly

draws m-tuples of successive numbers from the sequence of numbers generated by zi+1 = b*zi mod

P1. Where in this sequence we make the draw is determined by the generator xi+1,1 = a*xi,1 mod

P.

 What are the advantages of using this approach? There are three attractions: i) for a given i,

the tuple (xi1, xi2, ... xim) has all the statistical properties associated with the multiplier b, ii) for a

given j, the tuple (x xi+1,j, ... xi+k,j) has all the statistical properties associated with the multiplier a,

and iii) the time to generate a (pseudo) random deviate is that required by the generator using the

multiplier a. In particular, the generator using any of the multipliers a = 16807, 39373, 48271, or

69621 and P = 2^31 1 is fast and particularly easy to implement in a portable fashion, see Park and

Miller (1988) and Bratley, Fox, and Schrage (1987).

 If we use this approach, how should we choose b to ensure both satisfactory statistical and

overlap properties? Fishman and Moore (1986) implicitly examined the statistical properties of

every possible full cycle multiplier for generators of the form zi+1 = b*zi mod (231 1). Based on

number theoretic and empirical tests they recommend the following five multipliers that appear in

the left most column of the Table 1.

Table 1. Suggested Seeds.

 Minimum
 b1 b2 b3 b4 b5 Separation
 742938285 1710921057 1796558312 1943891214 1800077045 159,644,913
 950706376 129027171 1728259899 365181143 1966843080 171,352,421
1226874159 604629562 407791863 679979433 557612409 268,384,731
 62089911 847344462 1061653656 1954074819 226824280 341,462,557
1343714438 389745688 252992993 1742312917 988214982 13,274,813

Note: bj = bj1 mod (231 1) for each row, for j = 1 to 5.

 Using any one of the rows in Table 1 and the approach just described, one can generate

starting seeds for up to six streams. Seed x01 may be chosen arbitrarily, then seed x0j is obtained by

x0j = bj*x01 mod (231 1), for j = 1 to 5.

 Regarding overlap, the last column in the table shows minimum separation between any two

seeds of the row in the sequence produced by the generator xi+1 = 16807*xi mod (231 1). This

shows that the first four sets of b values result in 6-tuples that can be run for over 100,000,000

iterations without fear of overlap.

 Effectively, each row of the table is the first six outputs of one of the generators

recommended by Fishman and Moore, initiated with a seed of 1. An arbitrary number of parallel

streams can be initiated by making additional draws from these generators. Obviously, as more

streams in parallel are required, the possibility of getting nonoverlapping sequences diminishes.

Portable versions of the five generators are available from the second author. They require at most

two to three times the computation per iterate of the "fast" generator with a = 16807.

Summary

 We have seen that for widely used and tested generators based on the multiplicative

congruential generator, choosing starting seeds carelessly can lead to very nonrandom results.

References:

 Bratley, P., B. Fox and L. Schrage (1987), A Guide to Simulation, 2nd ed. Springer-Verlag,

New York.

 De Matteis, A. and S. Pagnutti (1988), "Parallelization of Random Number Generators and

Long-Range Correlations", Numerische Mathematik, vol. 53, pp. 595-608.

 Fishman, G.S. and L.R. Moore (1986), "An Exhaustive Analysis of Multiplicative

Congruential Random Number Generators with Modulus 231 1. SIAM J. Sci. Statistical

Computing, vol. 7, pp 24-45.

 Greenberger, M. (1961), "Notes on a New Pseudo-random Number Generator", J. of ACM,

vol. 8, pp. 163-167.

 L´Écuyer, P. (1988), "Efficient and Portable Combined Random Number Generators",

Comm. of ACM, vol. 31, no. 6, pp. 742-774.

 L´Écuyer, P. and S. Côté (1991), "Implementing a Random Number Package with Splitting

Facilities", ACM Transactions on Mathematical Software, vol. 17, no. 1, pp. 98-111.

 Lewis, P.A.W., Goodman, A.S., and Miller, J.M. (1969). A Pseudo-random Number

Generator for the System/360. IBM Systems Journal, 8, 136-146.

 Park, S.K., and K.W. Miller (1989) "Random Number Generators: Good Ones are Hard to

Find," Comm. of ACM, vol. 31, no. 10, pp. 1192-1201.

 Schriber, T. (1991), "An Introduction to Simulation Using GPSS/H", John Wiley and Sons,

New York.

 Wichman, B.A. and I.D. Hill (1982), Appl. Stat., vol. 31, pp. 188-190.

