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Abstract 

A recurrent theme in systems simulation is the need to generate multiple independent sequences 

from the same random number generator.  The advent of parallel computing has accentuated this 

need.  Conventional advice is that if non-overlapping sequences are chosen from a good generator, 

then the cross-correlation between sequences will be close to zero. When multiple streams of 

pseudo-random numbers are generated by any of four popularly recommended multiplicative prime 

modulus generators, we show that there exist initial seeds that avoid the overlap problem but result 

in dramatically nonrandom behavior.  We then give a suggestions for selecting initial seeds that 

avoid both problems. 

 

History 

In 19?? John Von Neumann stated that anyone attempting to generate a random process through 

deterministic means was living in a state of sin (date and exact quote needed). So far, history has 

proven him correct on several occasions. Perhaps the most striking of these was the discovery by 

Marsaglia in 19?? (reference) of a serious flaw in a widely used generator of the time. In an article 

entitled "Random numbers lie mainly in the plane" he showed that triples of random numbers which 

should have uniformly filled the unit cube, were in fact distributed accross a number of parallel 

planes. In 19?? Donald Knuth (ref) described his effort to generate random numbers through an 

extremely complex iterative process.  The output appeared random at first, then quickly converged to 

a single constant. 

 

The above notwithstanding, it is still tempting to generate pseudo random variables deterministically 

in order to get repeatable results.  

Multiplicative congruential generators  

Multiplicative congruential random number generators are probably the most widely used 

procedures for computer generation of random numbers. Conceptually the technique can be 

understood in terms of a common clock as follows: 

 

Initialization: With the clock’s hands both straight up (12 O'clock), the hour hand is moved to an 

initial position, x0 minutes. x0 is known as the seed. 

 

As the hour hand is moved, the minute hand turns through 12 times as many minutes, perhaps 

passing 12 O'clock, to arrive at x1 minutes. Where x1 = 12*x0 mod 60 is the first random variate. 

 

Iterative step: The hour hand is moved to x i minutes (the ith random variate), whereupon the 

minute hand will turn to xi+1  = 12* xi mod 60 minutes (the i+1st random variate). 

 

From a practical standpoint, a standard clock is most unsatisfactory at generating pseudo-random 

numbers, as x i will cycle through the sequence 12, 24, 48 and 36 indefinitely for any x0 which is not 

a multiple of 5, and will remain at 0 for any x0 which is a multiple of 5. However, by generalizing to 

a clock with P minutes and a gear ratio of ‘a” usefull results may be obtained. For good choices of a 

and P the generator will be full cycle, that is, the generator will enumerate every integer in the 

interval [1, P 1] exactly once before it cycles.  Thus, from a global perspective there is no reason to 

prefer one seed over another. Furthermore the sequence {x i} will display no serial correlation. 

 

 



Now suppose we wish to generate two sequences of numbers {xi} and {yi} and we wish to use the 

same recursion for both, i.e., xi = f(xi 1) and yi = f(yi 1).  If we are concerned about the correlation 

between xi and yi, can we still say that from a global perspective we are indifferent to choices of the 

initial seeds x0 and y0?  For standard multiplicative congruential generators the answer is "no". 

 A number of simulation references suggest implicitly that when generating multiple streams 

using the same generator, the starting seeds should be far apart, see for example, L´Écuyer and Côté 

(1991) or Bratley, Fox, and Schrage (1987).  The GPSS/H system, for example, uses starting seeds 

that are 100,000 apart, see Schriber (1991).  Below we show that for standard generators, "seeds far 

apart" is not sufficient, specifically that there is a second potential problem independent of overlap. 

 A standard multiplicative congruential generator uses the recursion xi = a*xi 1 mod P where 

a is the multiplier and P is the modulus.  If P is a prime number bigger than 2 and a  is a primitive 

root modulo  P,  then the generator is full cycle, i.e., if 0 <x0 <P, then xi will take on every value in 

[1, P 1] exactly once before a number is repeated.  If  P = 2^31 1, then approximately 25% of the 

integers in [2, P 1] are primitive roots.  This full cycle behavior is desirable but does not guarantee 

that the xi's have good statistical qualities (such as lack of autocorrelation).  Fishman and Moore 

(1986) point out that among multipliers that are full cycle, some multipliers are much better than 

others in this statistical regard. 

 Suppose we choose two integer seeds 0 <x0, y0 <P.  Now there must exist some integer b 

such that y0= b*x0 mod P.  For example, if  yo  and  xo  are  k  apart in the full stream, then  b = ak  

mod  P  works.  For subsequent "draws" we can write: 

 yi = a*yi 1 mod P 

  = ai*y0 mod P 

  = ai*b*x0 mod P 

  = b*aix0 mod P 

  = b*xi mod P 

 Thus, we can see xi and yi are effectively two successive numbers generated by a generator 

of the form: 

 zi+1 = b*zi mod P. 

From a global perspective (xi, yi) have exactly the same statistical behavior as the pair (zi, zi+1).  

Thus, if b is a good multiplier in the statistical sense of Fishman and Moore, then we would expect 

xi and yi to be independent and therefore uncorrellated.  Greenberger (1961) shows that the serial 

correlation of (zi, zi+1) is bounded from above by 

  (1/b) + (b+6) /P. 

If b is not much bigger than 1 or not much smaller than P, this is not a very reassuring bound.  The 

following example shows that this concern is justified. 

Example 

 Suppose we carelessly choose x0 = 100,000, and y0 = 200,000.  In this case it is easy to see 

that b = 2.  Whenever xi <.25*P, then yi <.5*P and so we would expect that xi and yi would appear 

dependent. 

 For a generator of the form  xi = ax i 1 Mod P, Figure 1 shows the relationship between xi 

and yi for the case of b = 2.  For arbitrary integer  b,  one needs at most b parallel lines to cover the 

pairs (xi, yi). 

 

 



 
Figure 1.  xi vs. yi, when yo = 2*xo  

 

 Choosing the tuple multiplier, b, equal to 2, implies that for 0   xi   P/2, we have yi = 2*xi; 

while for P/2 < xi < P, we have yi = 2*xi   P.  If we look at Si = xi + yi, then with probability .5, Si is 

uniform on (0, 1.5*P) and with probability .5, Si is uniform on (.5*P, 2*P).  Thus, Si has the 

"Olympic Awards Pedestal" distribution as in Figure 2; decidedly different from triangular 

distribution we would expect if xi and yi were independent. 

 
Figure 2:  Distribution of xi + yi 

 Thus, b = 2 or 3 is probably a bad choice, even though 2 and 3 occur at steps 1,385,473,320 

and 1,783,741,719 respectively after 1 in the sequence generated by the popularly recommended 

multiplier 16807, see Lewis et. al. (1969). 

 We have illustrated that choosing b a small integer is not good.  This result can be 

generalized slightly to small rational numbers.  Suppose yo and xo are chosen so that there are 

positive integers b and c such that 

 c yo mod P = b xo mod P 

We then claim that for i = 1, 2, ...: 

 c yi mod P = bxi mod P. 

Suppose it is true for i   1; multiply by a gives: 

 a c yi 1 mod P = a b xi 1 mod P 

or  c a yi 1 mod P = b a xi 1 mod P 

or  c yi mod P = b xi mod P, as was claimed. 

We now claim that the (xi, yi) fall on at most b+c 1 parallel lines.  (They may in fact fall on fewer 

than b+c 1 lines, - which is even worse).  The argument is as follows: 

 c yi mod P   bxi mod P = 0 implies 

that there is an integer k, possibly negative, such that 

 c yi   bxi   kP = 0. 



Because 0 < xi, yi < P, the largest k needed is such that: c(P 1)   b   kP = 0.  So k   (cP   (c+b))/P < c.  

Similary, the smallest k needed is such that: 

 c   b (P 1)   kP = 0 

so 

 k   ( bP + c+b)/P >   b 

The number of integers strictly between +c and  b is c+b 1.  Each value of k corresponds to a line in 

(x,y) space, so there are at most c+b 1 such lines. 

 De Matteis and Pagnutti (1988) analyze the case b = a(P 1)/2 mod P, c = 1 where P is a 

prime and a is a primitive root of P.  This choice of b is equivalent to jumping ahead halfway 

through the full cycle, that is, yi = xi+s where s = (P 1)/2.  They show the unhappy result that in this 

case yi = P xi, that is, perfect negative correlation.  They go on to say:  "We have also analyzed the 

pairs (xi, xi+s) for values of s corresponding to other divisors...but we did not succeed in detecting 

strong linear patterns."  We show that there are seeds that do display strong linear patterns. 

Combinations of Generators 

 Wichman and Hill (1982) describe a generator obtained by combining the outputs of three 

generators, while L´Écuyer (1988) describes two generators obtained by combining the outputs of 

either two or three generators.  The same weakness that we have just described for simple generators 

afflicts these more complicated generators.  Specifically, an inappropriate choice of seeds for two 

parallel streams  X  and  Y  can produce correlation that is essentially identical to that observed in 

Figure 1. 

 The "two stream" combination generator described in L´Écuyer (1988) is of the form: 

 X1(i) =  a1X1(i 1)  mod  P1 , 

 X2(i) =  a2X2(i 1)  mod  P2 , 

 X3(i) =  X1(i)   X2(i) 

 If X3(i)   0,  then  X3(i) = X3(i) + (P1   1) 

The output is the stream  X3(i).  The user sees the component streams  X1(i)  and  X2(i)  only to the 

extent that he must supply the seeds  X1(0)  and  X2(0). 

 

L´Écuyer's recommends: 

 a1 = 40014,  P1 = 2147483563,  a2 = 40692, and  P2 = 2147483399. 

 Now suppose the user needs a second stream generated by the same generator but with 

different seeds.  Replace  X  by  Y  to denote this stream.  The user happens to choose seeds such 

that  Y1(0) = b*X1(0) mod P1  and  Y2(0) = b*X2(0) mod P2 .  Suppose a1 , a2 , P1 and P2 are such 

that the X1(i) and X2(i) streams are full cycle, and  w = P1   P2 > 0.  The qualitative result is that if 

both  b  and  w  are small relative to  P1,  Y3(i)  is well approximated by  bX3(i) mod  P1 .  In fact if  

b = 2  and Y3(i)  is plotted vs. X3(i), the graph for L´Écuyer's generator is indistinguishable from 

Figure 1. 

 Suppose we randomly choose the ith output from the  Y  stream.  By previous arguments we 

have that  Y1(i) = bX1(i) mod P1 .  Now  Y2(i) = bX2(i) mod  P2 = bX2(i)   rP2 = bX2(i)   r(P1 w) = 

bX2(i) rP1 + rw 

     where r =   bX2(i)/P2  , 

     and         denotes the integer part. 

so 

  Y2(i)   rw = bX2(i)   rP1 . 

 If Y2(i)   rw   0, then it follows that 

  Y2(i)   rw = bX2(i)   mod P1 . 

Because  i  was chosen randomly, Y2(i)  is uniform distributed over  [1, P2 1].  Thus, Prob{Y2(i)   

rw} = 1   rw/(P2 1) for rw   P2 1.  Because X2(i) < P2, it follows that r < b, so Prob{Y2(i)    rw} > 1   

bw(P2   1). 

So for bw << P2, with high probability: 

 Y3(i) =  b X1(i)  mod  P1   {b X2(i) mod P1 + rw} +  (P1    1) 

where    = 1  if Y3(i) would otherwise be   0. 

We can rewrite this as 

 Y3(i) =  b {X1(i)   X2(i)}   rw       r1 P1 



where  r1  is the unique integer causing: 

 0 < b {X1(i)   X2(i)}   rw       r1 P1 < P1 

Now consider  bX3(i) mod P1 

 =  b[X1(i)   X2(i) +  1 (P 1   1)] mod P1 

  where   1 = 1  if  X1(i)   X2(i)   0, else 0; 

Rearranging: 

 bX3(i) mod P1 = b{X1(i)   X2(i)}   b 1   r2 P1 

where  r2  is the unique integer causing: 

 0 < b {X1(i)   X2(i)}   b 1   r2 P1 < P1 

If  P1  and  P2  are both prime, and  a1 and a2  are full cycle multipliers, then every possible value of  

X1(i)  is equally likely, given the value of  X2(i).  We can argue that given the value of  X2(i), the 

fraction of the values of X1(i) that cause  r2   r1  is less than  2 b(w+2)/P 1.  Recalling that  0    ,  1   

1 we conclude that 

Prob{| Y3(i)   bX3(i) mode P1 | < b + bw + 1} 

    [1   bw/(P2   1)] [ 1   2b (w + 2)/P1] 

 For L´Écuyer's two stream combination generator, w = 2147483563   2147483399 = 164.  If 

we carelessly choose seeds so that  b = 2,  then for the median value of  Y3(i)  with probability about  

.9999995  we will have that | (Y3(i)   bX3(i) mod P1) /Y3(i) |   .0000003. 

 We do not give proofs here for the other generator in L´Écuyer (1988) or Wichman and Hill 

(1982), however, the same effect illustrated in Figure 1 can be observed by choosing seeds in the 

second generator that are a small multiple of the seeds in the first generator. 

Choosing Multiple Seeds Systematically 

 Thus, we have several negative results on how not to choose other seeds.  Can we give any 

positive recommendations? 

 Suppose we wish to generate m parallel random sequences from a simple generator.  Think 

of these as m-tuples (xi1, xi2, ... xim), (xi+1,1, xi+1,2, ..., xi+1,m), etc., where xij is the ith number 

from the jth sequence.  Given our previous comments, a way of doing this is to use two different 

simple generators.  Generate xi1, xi+1, 1, ... by the recursion:  I) xi+1,1 = a*xi,1 mod P, and generate 

xij, for j = 2, 3, ... m, by the recursion: II) xij = b*xij 1 mod P1.  From our earlier result we know we 

can achieve the same effect using recursion (II) when i = 1 and thereafter replacing (II) by the 

recursion:  II ) xij = a * xi 1,j mod P for j = 2, 3, ..., m.  Conceptually, the above approach randomly 

draws m-tuples of successive numbers from the sequence of numbers generated by zi+1 = b*zi mod 

P1.  Where in this sequence we make the draw is determined by the generator xi+1,1 = a*xi,1 mod 

P. 

 What are the advantages of using this approach?  There are three attractions:  i) for a given i, 

the tuple (xi1, xi2, ... xim) has all the statistical properties associated with the multiplier b, ii) for a 

given j, the tuple (x xi+1,j, ... xi+k,j) has all the statistical properties associated with the multiplier a, 

and iii) the time to generate a (pseudo) random deviate is that required by the generator using the 

multiplier a.  In particular, the generator using any of the multipliers  a = 16807, 39373, 48271, or 

69621 and P = 2^31 1 is fast and particularly easy to implement in a portable fashion, see Park and 

Miller (1988) and Bratley, Fox, and Schrage (1987). 

 If we use this approach, how should we choose b to ensure both satisfactory statistical and 

overlap properties?  Fishman and Moore (1986) implicitly examined the statistical properties of 

every possible full cycle multiplier for generators of the form zi+1 = b*zi mod (231 1).  Based on 

number theoretic and empirical tests they recommend the following five multipliers that appear in 

the left most column of the Table 1. 



Table 1.  Suggested Seeds. 

           Minimum 
     b1          b2            b3           b4           b5       Separation 
 742938285   1710921057   1796558312   1943891214   1800077045    159,644,913 
 950706376    129027171   1728259899    365181143   1966843080    171,352,421 
1226874159    604629562    407791863    679979433    557612409    268,384,731 
  62089911    847344462   1061653656   1954074819    226824280    341,462,557 
1343714438    389745688    252992993   1742312917    988214982     13,274,813 
 
Note:  bj = bj1 mod (231 1) for each row, for j = 1 to 5. 

 Using any one of the rows in Table 1 and the approach just described, one can generate 

starting seeds for up to six streams.  Seed x01 may be chosen arbitrarily, then seed x0j is obtained by 

x0j = bj*x01 mod (231 1), for j = 1 to 5. 

 Regarding overlap, the last column in the table shows minimum separation between any two 

seeds of the row in the sequence produced by the generator xi+1 = 16807*xi mod (231 1).  This 

shows that the first four sets of b values result in 6-tuples that can be run for over 100,000,000 

iterations without fear of overlap. 

 Effectively, each row of the table is the first six outputs of one of the generators 

recommended by Fishman and Moore, initiated with a seed of 1.  An arbitrary number of parallel 

streams can be initiated by making additional draws from these generators. Obviously, as more 

streams in parallel are required, the possibility of getting nonoverlapping sequences diminishes. 

Portable versions of the five generators are available from the second author.  They require at most 

two to three times the computation per iterate of the "fast" generator with  a = 16807. 

Summary 

 We have seen that for widely used and tested generators based on the multiplicative 

congruential generator, choosing starting seeds carelessly can lead to very nonrandom results.
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